(37)  

In the case of bound states for the nonperiodic potentials we have treated up to now, (the particle in a box, the square well, the Coulomb potential of the hydrogen atom), we have seen the energy spectrum is discretised into a sequence of points. Now, with the case of bound states in a periodic potential, the energy spectrum has regions where it has allowed continuous bands, and forbidden band gaps. The band gaps arise at particular values of the particle momentum or wavenumber . The significance of the zone in space where each energy band occurs is so great that these zones have a special name. They are called ``Brillouin zones''.
1st Brillouin zone  
2nd Brillouin zone 

The issue of the density of states will arise later, in discussions of the quantum statistics of electrons (fermions) in energy bands, just as the issue arose in connection with ``gases'' of fermions and bosons in the preceding section on statistical mechanics. The discussion now will refer to a one dimensional band. Later, the discussion will be broadened to cover a more realistic three dimensional band.
As before, imagine is the periodicity of the lattice, and is its length. The lattice
contains atoms.
(38) 
(39) 
(40) 
(41) 
Exercise 6.2
Verify this.
Therefore
and
(42)  
Therefore there are states in the band spaced apart. Each primitive cell in one dimension therefore contributes exactly one independent value of to each band. Taking spin into account, the total number of electron states in each onedimensional band is .
It is worthwhile considering the origin of band structure from a third point of view. Consider the formation of molecular orbitals when two hydrogen atoms approach each other to form a chemical bond. The two original single atom wave functions evolve into the two molecular orbitals and . Whereas the two single atom orbitals had the same energy when the atoms were separated, the two molecular orbitals have different energies. The bonding molecular orbital has a lower energy than the nonbonding molecular orbital. We extract the principle that the process of bonding generates new molecular orbitals, whose proliferation increases with the number of atoms participating in the bond. Moreover, the energies of these new molecular orbitals depends on the inter nuclear separation. The inter atomic distance in the molecule is that distance for which the molecular orbital energies are minimised. If we have a solid, we may imagine that we have a very large number of atoms participating in the bond. There will therefore be very many molecular orbitals, so many that they form a quasicontinuous band of available energy states for the electrons. The concept of band formation via many molecular orbitals is illustrated for silicon and diamond in figure 10.

Note the formation of quasicontinuous bands separated by forbidden gaps. This method of viewing band formation is instructive, as it illuminates the mechanism of filling of the bands by electrons, according to the Pauli Exclusion Principle for fermions.
For example, the 6 electrons of carbon must be allocated to the bands for a solid carbon lattice consisting of atoms. It turns out that the valence electrons are all allocated to the lower valence band, and no electrons are allocated to the upper band, which remains empty. The empty band is separated from the valence band by a forbidden gap.
The width of the band gap is 6eV in the case of diamond. It is not possible for the valence electrons to be transported, as there are no empty states in the valence band for the electrons to move into.
In the case of a metal, some of the energy bands overlap, without any gap formation. There are thus many unoccupied energy states. Metals are conductors, as these unoccupied energy states offer a pathway for transport of the electrons.
Silicon is a semiconductor, as its energy gap is only 1 eV. At room temperature, some electrons acquire sufficient energy to become excited across the forbidden gap, into the empty band above. These electrons then become conduction electrons, and this empty band is known as the valence band. The distinction between insulators, semiconductors and metals discussed above is illustrated in figure 11

Electron velocity
The velocity of an electron in a band is the group velocity of the wave packet.
Exercise 6.3
Verify this. Indicate on an energyband diagram the maximum and and minimum
electron velocities.
Electron effective mass
A free electron has a rest mass of keV. An electron in a material interacts with
its surroundings. The electron responds to a given force with an acceleration
dependent on its inertial mass as indicated in Newton's 2nd Law of motion :
(45) 
(46) 
(47) 
Exercise 6.4
Verify this.
The quantity is the curvature of the band. We see the effective mass is inversely proportional to the band curvature.
Exercise 6.5
Indicate where the effective mass of the electron is greatest and least on the band diagram.
Note that it becomes infinite at points of inflection, and that it can also be negative.
The frequency response of semiconductors is understood in terms of the effective mass of the electron. Optimisation of the frequency response requires designing semiconductor materials with the appropriate band structure.
Equations 43 and 48 give the dependence of the electron wave function group velocity, , and the electron effective mass, , on the band energy . This is also depicted graphically in Figure 12

Holes
In the case of a completely filled band, . This is because there
is an energy state labelled by for every energy state labelled by .
If an electron is excited from the valence band to the conduction band, then
is no longer zero. Because an electron of momentum
is now missing from the summation, we have for the
remaining electrons in the valence band. (See figure 13).
The hole that is left behind in the valence band therefore has the following properties.
