## Physics IIE (Engineering): PHYS284 - 2004



## Tutorial 2: Introduction to Quantum Mechanics

- 1. Find the de Broglie wavelength of a  $\pi^+$  meson of kinetic energy 100 MeV. Compare it with the wavelength of a photon of the same total energy. [6.4fm, 5.2fm]
- 2. What is the de Broglie wavelength for an average helium atom in a furnace at 400K? [66 pm]
- 3. A particle has a mass of 1kg. How long does it take to move through a distance of 1m if its de Broglie wavelength is comparable to that of visible light (500nm)? What is the corresponding answer if the particle is an electron?  $[2.3 \times 10^{19} \text{years}, 6.8 \times 10^{-4} \text{s}]$
- 4. The position and momentum of a 1keV electron are simultaneously determined. If its position is located to within 0.1nm, what is the minimum percentage uncertainty in its momentum?  $[(\Delta p \Delta x \approx h \quad 38\%)] \text{ or } [(\Delta p \Delta x \approx \hbar \quad 38\%)]$
- 5. A 50g bullet travels at 333ms<sup>-1</sup> (accurate to 0.01%). Show that for practical purposes, the Uncertainty Principal poses no limitations on hitting the target.
- 6. Show that the ground state energy of a particle in a rectangular linear potential well with infinitely high sides is compatible with Heizenberg's Uncertainty Principal.
- 7. A linear quantum dot can be modelled as a electron in a box. It can be formed by deposting contacts on a slab of GaAs and then applying a bias voltage in such a way as to create a linear confining potential. Suppose the observed ground-state electron energy is 0.03 eV. How big is the quantum dot? [5.7nm]
- 8. Find the ground state energy and the first two excited states for an electron in a one dimensional box of atomic dimensions (1Å). By contrast, what is the groundstate energy of a  $10^{-2}$  kg marble in a 0.1m wide box. If the marble rolls in the box with a very slow velocity of  $10^{-2}$  m/year, what is its corresponding quantum number?

 $[38eV, 151eV, 340eV, 3.4 \times 10^{-45}eV, n = 9.5 \times 10^{-45}]$ 

- 9. Use Schrödinger's equation to solve the problem of an infinitely deep square well with the origin at the center of the well and V=0 for  $-\frac{a}{2} \le x \le \frac{a}{2}$ . Show that the solutions are alternatively of even and odd parity. (Even parity  $\Rightarrow f(x) = f(-x)$ , odd parity  $\Rightarrow f(x) = -f(-x)$ .)
- 10. A particle is confined between rigid walls a distance L apart. What is the probability that it will be found within a distance L/3 of one wall
  - (a) when the particle is in its ground state,
  - (b) when it is in the n=2 state and
  - (c) under the assumption of classical physics  $(n = \infty)$ .e

(Hint: 
$$\int \sin^2 x = \frac{1}{2}(x - \cos x \sin x)$$
.) [0.2, 0.4, 0.33]